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ABSTRACT
In ultrasound (US) imaging, denoising is intended to im-

prove quantitative image analysis techniques. In this paper, a

new version of the Non Local (NL) Means filter adapted for

US images is proposed. Originally developed for Gaussian

noise removal, a Bayesian framework is used to adapt the

NL means filter for speckle noise. Experiments were carried

out on synthetic data sets with different speckle simulations.

Results show that our NL means-based speckle filter outper-

forms the classical implementation of the NL means filter, as

well as two other speckle adapted denoising methods (SRAD

and SBF filters).

Index Terms— Image restoration, Image enhancement,

Acoustics, Acoustic applications

1. INTRODUCTION AND RELATED WORK

Denoising is a particularly challenging problem in ultra-

sound (US) imaging since the signal-to-noise ratio is low.

Contrary to the Gaussian noise model assumed in usual de-

noising methods, US imaging requires specific filters due to

the statistical nature of the speckle. Speckle in US images is

useful for the radiologist since this signal contains informa-

tion about the density and the size of scatters. Nonetheless, the

speckle is often considered as noise by the image processing

community, because its presence spoils medical image ana-

lysis procedures. For this reason, denoising filters have been

developed. The well known adaptive filters, such as Lee’s fil-

ter [1], Frost’s filter [2], and Kuan’s filter [3], are based on

the hypothesis that speckle noise is essentially a multiplica-

tive noise. More recently, the Adaptive Speckle Reduction fil-

ter (ASR) [4] uses local statistics of the image to estimate the

areas of the image to be processed. The classical formulations

of Anisotropic Diffusion filter (AD) [5] and Total Variation

minimization scheme (TV) [6] have been adapted for US ima-

ging as Speckle Reducing Anisotropic Diffusion (SRAD) fil-

ter [7] or the Non-Linear Coherent Diffusion (NCD) filter [8].

The classical wavelet thresholding postulates that the loga-

rithm compression of the US images transforms speckle noise

into additive Gaussian noise. In order to overcome this as-

sumption, Pizurica et al. [9] proposed a method without prior

model on the noise and signal statistics. Recently, a stochastic

approach to ultrasound despeckling (SBF) has been develo-

ped [10]. This method removes the local extrema, considered

as outliers, by local averaging.

In this paper, we introduce a new restoration scheme in

the context of US imaging : a Non Local (NL) Means-based

Speckle Filter. The NL means filter was earlier introduced by

Buades et al. [11] for Gaussian noise reduction. The main

contribution of this paper is the adaptation of this filter to US

noise model based on the Bayesian formulation of the NL

means filter presented in [12] and the US noise model pro-

posed in [13]. A comparison of our method with SRAD [7],

SBF [10] and the classical NL means filters [11] is presented

for different levels of noise and speckle simulations.

2. THE NL MEANS-BASED SPECKLE FILTER

2.1. The Non Local Means Filter

In the classical formulation of the NL means filter [11],

the restored intensity NL(u)(xi) of the pixel xi, is a weighted

average of the pixels intensities u(xi) in the “search volume”

Vi. Let us denote :

NL(u)(xi) =
∑

xj∈Vi

w(xi, xj)u(xj) (1)

where w(xi, xj) is the weight assigned to intensity value

u(xj) for restoration of pixel xi. For each pixel xj in Vi,

the L2-norm ‖.‖2
2 is computed between u(Nj) (the neighbo-

rhood of xj) and u(Ni) (the neighborhood of xi). Then, these

distances are weighted by the weighting function defined as

follows :

w(xi, xj) =
1
Zi

e−
‖u(Ni)−u(Nj)‖22

h2 (2)

where Zi is the normalization constant ensuring that∑
xj∈Vi

w(xi, xj) = 1, and h acts as a smoothing parameter.

This filter produces high quality denoising but it is computa-

tionally expensive.
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Fig. 1. Blockwise NL means filter.

2.2. Blockwise Approach

To reduce the computational complexity of the algorithm,

we introduce a blockwise approach. In our blockwise NL-

means filter, a weighted average of patches is performed ins-

tead of weighted average of pixel intensities (cf Fig. 1). The

blockwise approach consists in a) dividing the volume into

blocks with overlapping supports ; b) performing NL means-

like restoration of these blocks ; c) restoring the pixels values

based on the restored intensities of the blocks they belong to :

a) A partition of the image Ω into overlapping blocks Bik

of size P = (2α+1)d is performed (d is the dimensionality of

the image : 2 or 3), such as Ω =
⋃

k Bik
, under the constraint

that the intersections between the blocks Bik
are non-empty

(i.e. 2α ≥ n). These blocks are centered on pixels xik
which

constitute a subset of Ω. The xik
are equally distributed at

positions ik = (k1n, k2n, k3n), (k1, k2, k3) ∈ N
d where n

represents the distance between the centers of Bik
.

b) the restoration of a block Bik
is based on a NL means

scheme defined as follows :

NL(u)(Bik ) =
X

Bj∈Vik

w(xik , xj)u(Bj) (3)

with

w(xik
, xj) =

1
Zik

e−
‖u(Bik

)−u(Bj)‖22
h2 (4)

where u(Bi) = (u(1)(Bi), ..., u(P )(Bi))T is an image patch
containing the intensities of the block Bi, Zik

is a normaliza-
tion constant ensuring that

∑
j w(xik

, xj) = 1 and

‖u(Bi)− u(Bj)‖22 =
PX

p=1

(u(p)(Bi)− u(p)(Bj))
2. (5)

c) For a pixel xi included in several blocks Bik
, several

estimations of the same pixel xi from different NL(u)(Bik
)

are computed and stored in a vector Ai (cf Fig. 1). The final
restored intensity of pixel xi is then defined as :

NL(u)(xi) =
1

|Ai|
X
l∈Ai

Ai(l). (6)

This approach allows to significantly reduce the complexity

of the algorithm. For instance, if we set n = 2, the complexity

is divided by a factor 4 in 2D and 8 in 3D.

2.3. Bayesian Formulation

Based on the recent Bayesian interpretation of the NL
means filter [12], the blockwise NL means can be written as :

NL(u)(Bik ) =

1
|Vik

|
P|Vik

|
j=1 p(u(Bik )|u(Bj))p(u(Bj))u(Bj)

1
|Vik

|
P|Vik

|
j=1 p(u(Bik )|u(Bj))p(u(Bj))

(7)

where p(u(Bik
)|u(Bj)) and p(u(Bj)) respectively denote

the distribution of u(Bik
)|u(Bj) and the prior distribution of

patches (assumed to be uniform in what follows). This new

formulation has the advantage to allow the adaptation of the

NL means filter to the underlying noise distribution.

2.4. Noise Model in Log-compressed US Images

Realistic modeling of noise distribution of US images is

difficult to establish for various reasons : (a) local correla-

tion due to periodic arrangements of scatterers [7], (b) enve-

lope detection and logarithm amplification of radio-frequency

signals performed on the displayed image [8], (c) additive

Gaussian noise due to sensors [8] and (d) additive Gaussian

noise related to A/N acquisition cards, tend to invalidate the

Rayleigh model of RF signal for US Log-compressed images.

In the wavelet denoising domain [8], the logarithmic opera-

tion is assumed to transform speckle noise into additive Gaus-

sian noise. Recent studies on US images show that the distri-

bution of noise is closer to the Gamma distribution [14] or

Fisher-Tippett distribution [15]. Another way to deal with the

problem of noise modeling in US images is to use a more

general image model defined as u(x) = v(x) + vγ(x)η(x)
where v(x) is the original image, u(x) is the observed image,

η(x) is a zero-mean Gaussian noise of variance σ2 and γ =
0.5. This model was first introduced for ultrasound image

denoising by Loupas et al. in [13] and then has been often

used [16]. Contrary to the Gaussian noise model, this noise

model is image-dependent and takes into account that speckle

noise amplitude is larger in regions of high intensities [14,16].

2.5. A New Statistical Distance for Patch Comparison :
the Pearson Distance

Based on the Bayesian formulation (see Eq. (7)), we

introduce a new scheme to compute the distance between

image patches based on the noise model : u(x) = v(x) +√
v(x)η(x), η(x) � N (0, σ2). We have u(x)|v(x) �

N (v(x), v(x)σ2), i.e. p(u(x)|v(x)) ∝ exp− (u(x)−v(x))2

2v(x)σ2 .

The likelihood can be factorized for a block as :

p(u(Bi)|u(Bj)) =
P∏

p=1

p(u(p)(xi)|u(p)(xj)) (8)

∝ exp−
PX

p=1

(u(p)(xi)− u(p)(xj))
2

2u(p)(xj)σ2
. (9)
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The Pearson distance is then substituted to the usual L2-norm
(see Eq. (5)).

dP (u(Bi),u(Bj)) =
PX

p=1

(u(p)(Bi)− u(p)(Bj))
2

u(p)(Bj)
. (10)

This new distance allows to smooth bright areas more than
dark areas, and then to be more adapted to speckle statistics.
As in [12, 17], pixel selection in the search area is applied to
speed up the filter and to better preserving contrast.

w(xik , xj) =

8<
:

1
Zik

e
−

dP (u(Bik
),u(Bj))

h2 if μ1 <
u(Bik

)

u(Bj)
< 1

μ1

0 otherwise.

(11)

μ1 is an hyper-parameter controlling the pixel selection

whose the value will be fixed for all the experiments. Compa-

red to the classical formulation, our Optimized Bayesian Non

Local Means filter (OBNLM) includes the Pearson distance

for weight computation, the pixel selection and the blockwise

implementation.

3. EXPERIMENTS

To evaluate the performances of our filter, different expe-
riments were carried out on synthetic images with two dif-
ferent models of speckle. The speckle models used during ex-
periments were different to the model used in our method in
order to perform a fair comparison. In the first experiment, a
synthetic image available in Matlab was corrupted with dif-
ferent levels of noise. The applied simulation of the speckle
was the Matlab speckle model : u(xi) = v(xi) + v(xi)ν(xi),
ν(xi) � N (0, σ2). Three levels of noise were tested with
σ = [0.2, 0.4, 0.8]. To quantify the quality of the denoising
obtained with the compared methods, the Signal to Noise Ra-
tio (SNR) was computed between the “ground truth” and the
denoised images.

SNR = 10log10

P
xi∈Ω(v(xi)

2 + ṽ(xi)
2)P

xi∈Ω(v(xi)− ṽ(xi))2
(12)

where v(xi) is the true value of the pixel and ṽ(xi) the resto-

red intensity of the pixel. For each method, at each noise le-

vel, the optimal filter parameters were searched within a large

range. Tab. 1 shows the SNR obtained during the compari-

son. For all levels of noise, our OBNLM filter significantly

obtained the best SNR. Fig. 2 shows the denoising results for

σ = 0.4. In the second experiment, we used the validation

framework proposed in [10]. In order to evaluate the compa-

red denoising filters with a more realistic speckle simulation,

the physical modeling of speckle presented in [18] was ap-

plied on a synthetic phantom (Field II). The denoising perfor-

mance of each filter is given by the ultrasound despeckling

assessment index (Q̃) as defined in [10]. According to [10],

a higher Q̃ indicates a better denoising. Fig. 3 presents the

denoising results obtained for the compared methods and the

corresponding Q̃ indexes. Similar values than those presen-

ted in [10] were found for SRAD and SBF filters. Compared

to the classical NL means filter, our method significantly im-

proves the Q̃ index (around 40%). In this evaluation frame-

work, our OBNLM filter obtained the highest Q̃ index. Fi-

nally, examples of denoising obtained on real data acquired

during neurosurgical procedure is given in Fig. 4. Our block-

wise implementation processes an image of 390 × 500 pixels

in 6s on a Pentium M 2GHz. Visually, our filter efficiently re-

moved the speckle while enhancing the edges and preserving

the image structures. The SRAD and SBF filters removed spe-

ckle but produced artifacts (local constant areas and artificial

structures). These artifacts are also visible in the experiments

on synthetic data sets, especially in Fig. 3.

SNR

Filter σ = 0.2 σ = 0.4 σ = 0.8

Noisy phantom 39.32 25.96 14.11
SBF [10] 49.61 43.86 38.04
SRAD [7] 57.17 44.07 33.29
NLM [11] 62.15 47.92 38.72
OBNLM 64.13 53.12 42.13

Table 1. Quantitative results obtained with the compared fil-

ters for the 2D phantom study. Our OBNLM filter obtained

the highest SNR for all noise levels.

First experiment with σ = 0.4

Phantom Noisy phantom

SBF [10] SRAD [7]

NLM [11] OBNLM

Fig. 2. Denoised images obtained by the compared filters in

the first experiment.

4. CONCLUSION

In this paper, we proposed a Non Local (NL) means-based

filter for US images by introducing the Pearson distance as

a relevant measure for patch comparison. Evaluations were

performed on synthetic data with different noise levels and

different speckle simulations. Experiments showed that the

proposed filter outperforms the classical implementation of

the NL means filter as well as the SRAD and the SBF filters.
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Second experiment (Field II)

Geometry of the phantom Field II simulation

SRAD [7] (Q̃ = 2.11) SBF [10] (Q̃ = 2.27)

NLM [11] (Q̃ = 1.95) OBNLM (Q̃ =2.71)

Fig. 3. Denoised images obtained by the compared filters and

the corresponding Q̃ index. Our filter obtained the highest Q̃
index.

These results show that image-redundancy assumption requi-

red for NL means filter holds for ultrasound imaging. Further

work will pursue on automatic tuning of filter parameters of

our Optimized Bayesian NL means (OBNLM) filter. Finally,

the impact of our method on post-processing tasks such as

segmentation or registration will have to be studied.
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